Методы измерения активных сопротивлений
В современных телекоммуникационных системах значения измеряемых активных (активное - значит потребляющее мощность) сопротивлений лежат в пределах от 10-8 до 10-10
Ом. Измеряют активное сопротивление как на постоянном, так и на переменном токе. Среди распространенных методов измерения активных сопротивлений на постоянном токе отметим: основанные на использовании амперметра-вольтметра, логометрические, мостовые.
14.2.1. Измерение сопротивлевий методом амперметра-вольтметра
Измерение методом амперметра-вольтметра (точнее, методом амперметра или вольтметра) сводится к определению тока или напряжения в цепи с измеряемым двухполюсником и последующему расчету его параметров по закону Ома. Метод используют для измерения активного и полного сопротивления, индуктивности и емкости.
На рис. 14.1 показана схемная реализация этих методов при измерениях активного сопротивления. Измерение активных сопротивлений проводят на постоянном токе, при этом включать резистор Rx в измерительную цепь можно по двум схемам.
В схеме с амперметром (рис. 14.1, а) отклонение показаний миллиамперметра мА
пропорционально току
(14.1)
и обратно пропорционально измеряемому сопротивлению Rx. По такой схеме удается измерять достаточно большие сопротивления (от 1 Ом до 200 МОм). Перед измерениями зажимы х замыкают Кл (тем самым закорачивают, т. е. шунтируют резистор Rx
) и переменным резистором Rдo6 устанавливают такой ток, чтобы стрелка отклонилась на всю шкалу, что соответствует точке 0 Ом.
а б
Рисунок 14.1. Измерение активных сопротивлений методом:
а – амперметра ;б - вольтметра
Для измерения небольших сопротивлений (0,01...100 Ом) используют схему с вольтметром (рис. 14.1, б), показания которого равны
(14.2)
если Rдo6
>> Rx и U ≈ ERx /Rдo6, т. е. имеет место прямая зависимость вольтметра от измеряемого сопротивления Rx. Перед измерением стрелку на приборе совмещают с отметкой «¥» при разомкнутых зажимах х (тем самым отключают резистор Rx).
Обе схемы измерения активных сопротивлений вызывают появление методических погрешностей ΔRx, зависящих от внутренних сопротивлений схем. Для схемы, показанной на рис. 14.1, а, методическая погрешность тем меньше, чем ниже внутреннее сопротивление амперметра (при RА → 0, ΔRx → 0), а в схеме, показанной на рис. 14.1, б, погрешность тем меньше, чем выше внутреннее сопротивление вольтметра (при RV → ¥ , ΔRx → 0). Итак, схемой, показанной на рис. 14.1, а, следует пользоваться для измерения больших сопротивлений, а схемой, показанной на рис. 14.1, б, - малых сопротивлений.
Погрешности измерения параметров элементов цепей методом вольтметра-амперметра на низких частотах составляют 0,5... 10% и определяются погрешностью используемых приборов и наличием паразитных параметров. Погрешности увеличиваются с ростом частоты.
14.2.2. Измерение активного сопротивления логометром
Уменьшить влияние источника питания Е на точность измерения сопротивлений можно с помощью логометра. Логометром называют измерительный механизм, показывающий отношение двух электрических величин, чаще всего двух токов. Логометры бывают магнитоэлектрическими и электродинамическими.
а 6
Рис. 14.2. Логометр:
а- устройство; б- схема включения
Наиболее распространен при практических измерениях логометр магнитоэлектрической системы. Логометр содержит две жестко скрепленные между рамки, помещенные в неравномерное поле постоянного магнита (рис. 14.2, а), которое реализуется специальной конфигурации полюсных наконечников. Неравномерным поле создают для того, чтобы вращающие моменты, приложенные к рамкам, зависели не только от токов, протекающих в рамках, но и от положения рамок в магнитном поле, т. е. М1
= ψ1(a)I1; М2 = ψ2 (a)IX, где I1, IX - токи, протекающие в рамках; ψ1(a), ψ2
(a) - значения потокосцеплений магнитов с их рамками. Противодействующий момент будет равен нулю, когда М1
= М2; ψ1(a)I1
= ψ2 (a)Ix, а значит, угол отклонения подвижной системы
(14.3)
Для схемы включения, приведенной на рис. 14.2, б,
(14.4)
где Rp - сопротивление рамок; Ro - образцовое сопротивление.
Итак, согласно формуле (14.4), показания логометра не зависит от колебания напряжения питания. Зависимость показаний от сопротивления RX позволяет создавать лабораторные логометры с погрешностью измерений, не превышающей 0,5 %. Нечувствительность логометра к колебаниям напряжения питания дала возможность разработать класс приборов, питающихся от генераторов, ротор которых вращают вручную и еще иногда использующиеся для определения сопротивления изоляции действующих телефонных сетей.
Измерение сопротивлений омметрами
Омметр
- измерительный прибор, предназначенный для измерения сопротивлений. Электронный омметр аналогового типа выполняют по схеме инвертирующего усилителя на ОУ, охваченного отрицательной ОС с помощью измеряемого сопротивления Rx
(рис. 14.3, а) Напряжение на выходе усилителя омметра определяется как
Uвых = – URХ / R1. (14.5)
а 6
Рис. 14.3. Схемы омметров для измерения сопротивлений:
а - малых; б - больших
Поскольку выходное напряжение линейно связано с измеряемым сопротивлением Rx, то шкала прибора И может быть проградуирована непосредственно в единицах сопротивления. Шкала равномерна в широких пределах. Погрешности измерения электронных омметров 2...4%.
В приборах для измерения особо больших активных сопротивлений (тераомметрах) сопротивления Rz
и R, надо поменять местами (рис. 14.3, б), при этом шкала измерительного прибора И получается обратной и напряжение
Uвых
= – UR1 / RХ (14.6)
Применение в одном приборе обоих вариантов схем позволяет создать измерители сопротивления с диапазоном измерения от единиц Ом до нескольких десятков МОм с погрешностью не более 10%. Измерители сопротивлений, построенные по приведенным схемам, используют для измерения сопротивлений и на переменном токе.
Похожие материалы:
Оставить комментарий